学术报告

当前位置:首页  学术报告

学术前沿讲座——Causal Inference in Panel Data with A Continuous Treatment

发布时间:2022-08-20访问量:10

报告题目

Causal Inference in Panel Data with A Continuous Treatment

报告人(单位)

肖志国 教授(复旦大学)

点评人(单位)

刘晓星 教授,尹威 副教授(东南大学)

会议地点

2022823日下午3:00;腾讯会议ID332-355-352

报告内容提要

This paper proposes a framework that subsumes the two-way fixed effects as a special case to conduct causal inference with a continuous treatment. Treatments are allowed to change over time and potential outcomes are dependent on historical treatments. Regression models on potential outcomes, along with the sequentially conditional independence assumptions (SCIAs) are introduced to identify the treatment effects, which are measured by aggregate average causal responses. We also propose to test the validity of the SCIAs with directed acyclic graphs (DAGs).

报告人简介

肖志国,复旦大学管理学院统计与数据科学系教授、副系主任。美国威斯康星大学麦迪逊分校经济学硕士、统计学博士。研究领域涉及变量误差模型、因果推断、国际经济学、以及中国宏观经济等。在Research Policy, Production and Operations Management, Journal of International Money and Finance, Review of Income and Wealth, Economics Letters, the World Economy, Journal of Multivariate Analysis等国际知名期刊上发表论文20余篇。

返回原图
/