报告题目
A convergent algorithm for ranking and selection with censored observations
报告人(单位)
肖辉(西南财经大学)
点评人(单位)
丁溢(东南大学)
点评人(单位)
时间地点
时间:2023年6月28日14:00
地点:腾讯会议618-629-374(实名进入)
报告内容摘要
We consider a problem of Ranking and Selection in the presence of Censored Observations (R&S-CO). An observation within the interval defined by lower and upper limits is observed at the actual value, whereas an observation outside the interval takes the closer limit value. The censored sample average is thus a biased estimator for the true mean performance of each alternative. The goal of R&S-CO is to efficiently find the best alternative in terms of the true mean. We first derive the censored variable’s mean and variance in terms of the mean and variance of the uncensored variable and the lower and upper limits, and then develop a sequential sampling algorithm. Under mild conditions, we prove that the algorithm is consistent, in the sense that the best can be identified almost surely, as the sampling budget goes to infinity. Moreover, we show that the asymptotic allocation converges to the optimal static allocation derived by the large deviations theory. Extensive numerical experiments are conducted to investigate the finite-budget performance, the asymptotic allocation, and the robustness of the algorithm.
报告人简介:
肖辉,新加坡国立大学博士,现任西南财经大学管理科学与工程学院教授、博士生导师、副院长,入选国家级青年人才、四川省人才计划等人才项目。主要从事仿真优化、可靠性与维修、风险管理等方向的研究,在SCI/SSCI期刊上发表论文60余篇,其中包括发表于TAC、Automatica、IISE、TR、EJOR、NRL论文20篇。主持国家自然科学基金青年项目(后期评估获特优)、面上项目等课题,先后获得国际“Ho-Pan-Ching-Yi”优秀论文奖、第六届系统科学与系统工程青年科技奖等奖励。现担任三本国际主流SCI/SSCI期刊Asia-Pacific Journal of Operational Research、Journal of Simulation、Financial InnovationFrontiers of Engineering Managemen的副主编或编委,以及中国系统工程学会青年工作委员会副主任委员、中国运筹学会可靠性分会常务理事、中国管理科学与工程学会理事。
主办:东南大学经济管理学院
协办:江苏省高校管理科学与工程学科联盟